- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Howe, Everett W. (2)
-
Arul, Vishal (1)
-
Booher, Jeremy (1)
-
Groen, Steven (1)
-
Harashita, Shushi (1)
-
Howe, Everett (1)
-
Howe, Everett W (1)
-
Kedlaya, Kiran S. (1)
-
Kudo, Momonari (1)
-
Li, Wanlin (1)
-
Matei, Vlad (1)
-
Pries, Rachel (1)
-
Springer, Caleb (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Arul, Vishal; Booher, Jeremy; Groen, Steven; Howe, Everett; Li, Wanlin; Matei, Vlad; Pries, Rachel; Springer, Caleb (, Mathematics of Computation)Abstract. We study the extent to which curves over ļ¬nite ļ¬elds are characterized by their zeta functions and the zeta functions of certain of their covers. Suppose C and C ā² are curves over a ļ¬nite ļ¬eld K, with K-rational base points P and P ā² , and let D and D ā² be the pullbacks (via the AbelāJacobi map) of the multiplication-by-2 maps on their Jacobians. We say that (C, P) and (C ā² , P ā² ) are doubly isogenous if Jac(C) and Jac(C ā² ) are isogenous over K and Jac(D) and Jac(D ā² ) are isogenous over K. For curves of genus 2 whose automorphism groups contain the dihedral group of order eight, we show that the number of pairs of doubly isogenous curves is larger than na¨ıve heuristics predict, and we provide an explanation for this phenomenon.more » « less
-
Kudo, Momonari; Harashita, Shushi; Howe, Everett W. (, Open Book Series)null (Ed.)
An official website of the United States government
